Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Cell Rep ; 43(3): 113896, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38442018

RESUMEN

The ataxia telangiectasia mutated (ATM) protein kinase is a master regulator of the DNA damage response and also an important sensor of oxidative stress. Analysis of gene expression in ataxia-telangiectasia (A-T) patient brain tissue shows that large-scale transcriptional changes occur in patient cerebellum that correlate with the expression level and guanine-cytosine (GC) content of transcribed genes. In human neuron-like cells in culture, we map locations of poly(ADP-ribose) and RNA-DNA hybrid accumulation genome-wide with ATM inhibition and find that these marks also coincide with high transcription levels, active transcription histone marks, and high GC content. Antioxidant treatment reverses the accumulation of R-loops in transcribed regions, consistent with the central role of reactive oxygen species in promoting these lesions. Based on these results, we postulate that transcription-associated lesions accumulate in ATM-deficient cells and that the single-strand breaks and PARylation at these sites ultimately generate changes in transcription that compromise cerebellum function and lead to neurodegeneration over time in A-T patients.


Asunto(s)
Ataxia Telangiectasia , Poli Adenosina Difosfato Ribosa , Humanos , ARN , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN , Ataxia Telangiectasia/genética , Reparación del ADN , Daño del ADN , Proteínas de Ciclo Celular/metabolismo
2.
Medicine (Baltimore) ; 103(8): e37122, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394544

RESUMEN

OBJECTIVE: Administering opioids via intravenous patient-controlled analgesia is a prevalent approach for managing postoperative pain. Nevertheless, due to concerns about opioid-related side effects and the potential for opioid tolerance, there is a growing emphasis on adopting opioid-sparing techniques for postoperative pain management. We aimed to investigate the effect of adding a basal rate infusion in fentanyl-based IVA following a cesarean section (CS). METHOD: Forty-eight patients, who received pain management through IVA after CS, were assigned randomly into 3 groups based on the background rate setting: Group 0 (0 mcg/hour, n = 16), Group 1 (15 mcg/hour, n = 16), and Group 2 (30 mcg/hour, n = 16). We assessed the impact of the basal infusion rate on opioid consumption and the visual analog scale (VAS) scores during the first 48 hours post-CS and also investigated opioid-induced side effects and the requirement for rescue analgesics in the ward during the first 48 hours after CS. RESULTS: In the initial 24 hours following CS, fentanyl consumption significantly increased in Group 2 compared with Group 0 and Group 1 (P = .037). At 24 hours, VAS scores both at rest and during movement, tended to decrease, as the basal rate increased; however, no significant differences were observed between the groups (P = .218 and 0.827, respectively). Between the first 24- and 48-hours post-CS, fentanyl consumption showed a marked increase in both Group 1 and Group 2 compared to Group 0 (P < .001). At 48 hours, the VAS scores at rest displayed a trend toward reduction; however, no significant differences between groups were evident (P = .165). Although the incidence of opioid-induced complications was noted, no statistically significant differences were recorded between groups during the initial 24 hours and subsequent 24 to 48 hours period (P = .556 and P = .345, respectively). CONCLUSION: The inclusion of a basal fentanyl infusion in the IVA protocol did not provide any advantages over an IVA devoid of a basal rate infusion in managing acute pain following CS.


Asunto(s)
Analgesia Controlada por el Paciente , Analgésicos Opioides , Humanos , Embarazo , Femenino , Analgesia Controlada por el Paciente/métodos , Proyectos Piloto , Cesárea/efectos adversos , Cesárea/métodos , Tolerancia a Medicamentos , Fentanilo , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/etiología
3.
Breast Cancer Res Treat ; 205(1): 193-199, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38286889

RESUMEN

INTRODUCTION: For patients with locally advanced triple negative breast cancer (TNBC), the standard of care is to administer the KEYNOTE-522 (K522) regimen, including chemotherapy and immunotherapy (pembrolizumab) given in the neoadjuvant setting. Pathological complete response (pCR) is more likely in patients who receive the K522 regimen than in patients who receive standard chemotherapy. Studies have shown that pCR is a strong predictor of long-term disease-free survival. However, factors predicting pCR to K522 are not well understood and require further study in real-world populations. METHODS: We evaluated 76 patients who were treated with the K522 regimen at our institution. Twenty-nine pre-treatment biopsy slides were available for pathology review. Nuclear grade, Nottingham histologic grade, Ki-67, lymphovascular invasion, and tumor infiltrating lymphocytes (TIL) were evaluated in these 29 cases. For the cases that did not have available slides for review from pre-treatment biopsies, these variables were retrieved from available pathology reports. In addition, clinical staging, race, and BMI at the time of biopsy were retrieved from all 76 patients' charts. Binary logistic regression models were used to correlate these variables with pCR. RESULTS: At the current time, 64 of 76 patients have undergone surgery at our institution following completion of K522 and 31 (48.4%) of these achieved pCR. In univariate analysis, only TIL was significantly associated with pCR (p = 0.014) and this finding was also confirmed in multivariate analysis, whereas other variables including age, race, nuclear grade, Nottingham grade, Ki-67, lymphovascular invasion, BMI, pre-treatment tumor size, and lymph node status were not associated with pCR (p > 0.1). CONCLUSION: Our real-world data demonstrates high TIL is significantly associated with pCR rate in the K522 regimen and may potentially serve as a biomarker to select optimal treatment. The pCR rate of 48.4% in our study is lower than that reported in K522, potentially due to the smaller size of our study; however, this may also indicate differences between real-world data and clinical trial results. Larger studies are warranted to further investigate the role of immune cells in TNBC response to K522 and other treatment regimens.


Asunto(s)
Linfocitos Infiltrantes de Tumor , Terapia Neoadyuvante , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Femenino , Terapia Neoadyuvante/métodos , Persona de Mediana Edad , Adulto , Anciano , Resultado del Tratamiento , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Estadificación de Neoplasias , Inmunoterapia/métodos , Clasificación del Tumor , Pronóstico
4.
J Microbiol Biotechnol ; 34(3): 570-579, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38213271

RESUMEN

Root-nodule nitrogen-fixing bacteria are known for being specific to particular legumes. This study isolated the endophytic root-nodule bacteria from the nodules of legumes and examined them to determine whether they could be used to promote the formation of nodules in other legumes. Forty-six isolates were collected from five leguminous plants and screened for housekeeping (16S rRNA), nitrogen fixation (nifH), and nodulation (nodC) genes. Based on the 16S rRNA gene sequencing and phylogenetic analysis, the bacterial isolates WC15, WC16, WC24, and GM5 were identified as Rhizobium, Sphingomonas, Methylobacterium, and Bradyrhizobium, respectively. The four isolates were found to have the nifH gene, and the study confirmed that one isolate (GM5) had both the nifH and nodC genes. The Salkowski method was used to measure the isolated bacteria for their capacity to produce phytohormone indole acetic acid (IAA). Additional experiments were performed to examine the effect of the isolated bacteria on root morphology and nodulation. Among the four tested isolates, both WC24 and GM5 induced nodulation in Glycine max. The gene expression studies revealed that GM5 had a higher expression of the nifH gene. The existence and expression of the nitrogen-fixing genes implied that the tested strain had the ability to fix the atmospheric nitrogen. These findings demonstrated that a nitrogen-fixing bacterium, Methylobacterium (WC24), isolated from a Trifolium repens, induced the formation of root nodules in non-host leguminous plants (Glycine max). This suggested the potential application of these rhizobia as biofertilizer. Further studies are required to verify the N2-fixing efficiency of the isolates.


Asunto(s)
Fabaceae , Bacterias Fijadoras de Nitrógeno , Rhizobium , Fabaceae/microbiología , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Bacterias Fijadoras de Nitrógeno/genética , Bacterias Fijadoras de Nitrógeno/metabolismo , Leguminas , Filogenia , ARN Ribosómico 16S/genética , Simbiosis/genética , Fijación del Nitrógeno , Glycine max , Bacterias/genética , Rhizobium/genética , Rhizobium/metabolismo , Verduras , Nitrógeno/metabolismo
6.
BMC Vet Res ; 20(1): 24, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216988

RESUMEN

BACKGROUND: Salinomycin, an antibiotic, have potential as a veterinary drug for fish due to its anti-parasitic activity against several fish parasites. Thus the residual levels of salinomycin in muscles of two significant aquaculture species in Korea, olive flounder and black rockfish, were analyzed using HPLC-MS-MS. RESULTS: The proper method to analyze the residual salinomycin in fish muscles using LC-MS-MS was settled and the method was validated according to CODEX guidelines. The residues in three distinct groups for two fish species were analyzed using the matrix match calibration curves at points of five different times following oral administration. After oral administration, salinomycin rapidly breaks down in both olive flounder and black rockfish. After 7th days, the average residue in all groups of two fish spp. decreased below limit of quantitation (LOQ). CONCLUSION: Due to low residue levels in fish muscles, salinomycin may therefore be a treatment that is safe for both fish and humans. This result could contribute to establishment of MRL (minimal residual limit) for approval of salinomycin for use in aquaculture.


Asunto(s)
Enfermedades de los Peces , Lenguado , Perciformes , Policétidos Poliéteres , Piranos , Humanos , Animales , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/parasitología , Peces , Músculos/parasitología , Administración Oral
7.
ACS Nano ; 18(3): 1995-2005, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38214304

RESUMEN

Transition metal (TM) based Prussian whites, comprising a cyanide anion ((C≡N)-) and TM cations in an alternative manner, have been widely adopted as cathode materials for rechargeable batteries. Prussian whites are characterized by the TM electronic states that exclusively adopt low spin (LS) toward the C atom and high spin (HS) toward the N atom through the hybridized covalent bonding in the TM─C≡N─TM unit with the average oxidation states of the TM ions being 2+, considerably affecting the phase transition behavior upon the release and storage of carrier ions; however, there have been only a few studies on their associated features. Herein, Prussian whites with different HS TM ions were synthesized via coprecipitation and the phase transition behavior controlled by the π electron interaction between the cyanide anions and TM ions during battery operations was investigated. In situ X-ray characterizations reveal that the combined effect of π backdonation in the LS Fe-C unit and π donation in the HS TM-N unit effectively controls the bond length of the TM─C≡N─TM building unit, thus markedly influencing the lattice volume of a series of Prussian white cathodes during the charge/discharge process. This study presents a comprehensive understanding of the structure-property relationship of the Prussian white cathodes involving π electron interactions during battery operations.

8.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260306

RESUMEN

Apical-out organoids produced through eversion triggered by extra-organoid extracellular matrix (ECM) removal or degradation are generally small, structurally variable, and limited for viral infection and therapeutics testing. This work describes ECM-encapsulating, stably-inverted apical-out human upper airway organoids (AORBs) that are large (~500 µm diameter), consistently spherical, recapitulate in vivo-like cellular heterogeneity, and maintain their inverted morphology for over 60 days. Treatment of AORBs with IL-13 skews differentiation towards goblet cells and the apical-out geometry allows extra-organoid mucus collection. AORB maturation for 14 days induces strong co-expression of ACE2 and TMPRSS2 to allow high-yield infection with five SARS-CoV-2 variants. Dose-response analysis of three well-studied SARS-CoV-2 antiviral compounds [remdesivir, bemnifosbuvir (AT-511), and nirmatrelvir] shows AORB antiviral assays to be comparable to gold-standard air-liquid interface cultures, but with higher throughput (~10-fold) and fewer cells (~100-fold). While this work focuses on SARS-CoV-2 applications, the consistent AORB shape and size, and one-organoid-per-well modularity broadly impacts in vitro human cell model standardization efforts in line with economic imperatives and recently updated FDA regulation on therapeutic testing.

9.
Lab Chip ; 24(2): 197-209, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38093669

RESUMEN

This paper introduces a two-inlet, one-outlet lung-on-a-chip device with semi-circular cross-section microchannels and computer-controlled fluidic switching that enables a broader systematic investigation of liquid plug dynamics in a manner relevant to the distal airways. A leak-proof bonding protocol for micro-milled devices facilitates channel bonding and culture of confluent primary small airway epithelial cells. Production of liquid plugs with computer-controlled inlet channel valving and just one outlet allows more stable long-term plug generation and propagation compared to previous designs. The system also captures both plug speed and length as well as pressure drop concurrently. In one demonstration, the system reproducibly generates surfactant-containing liquid plugs, a challenging process due to lower surface tension that makes the plug formation less stable. The addition of surfactant decreases the pressure required to initiate plug propagation, a potentially significant effect in diseases where surfactant in the airways is absent or dysfunctional. Next, the device recapitulates the effect of increasing fluid viscosity, a challenging analysis due to higher resistance of viscous fluids that makes plug formation and propagation more difficult particularly in airway-relevant length scales. Experimental results show that increased fluid viscosity decreases plug propagation speed for a given air flow rate. These findings are supplemented by computational modeling of viscous plug propagation that demonstrates increased plug propagation time, increased maximum wall shear stress, and greater pressure differentials in more viscous conditions of plug propagation. These results match physiology as mucus viscosity is increased in various obstructive lung diseases where it is known that respiratory mechanics can be compromised due to mucus plugging of the distal airways. Finally, experiments evaluate the effect of channel geometry on primary human small airway epithelial cell injury in this lung-on-a-chip. There is more injury in the middle of the channel relative to the edges highlighting the role of channel shape, a physiologically relevant parameter as airway cross-sectional geometry can also be non-circular. In sum, this paper describes a system that pushes the device limits with regards to the types of liquid plugs that can be stably generated for studies of distal airway fluid mechanical injury.


Asunto(s)
Microfluídica , Surfactantes Pulmonares , Humanos , Surfactantes Pulmonares/metabolismo , Pulmón/metabolismo , Tensoactivos , Dispositivos Laboratorio en un Chip
10.
Int J Stem Cells ; 17(1): 51-58, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38123486

RESUMEN

With the activity of intestinal stem cells and continuous turnover, the gut epithelium is one of the most dynamic tissues in animals. Due to its simple yet conserved tissue structure and enteric cell composition as well as advanced genetic and histologic techniques, Drosophila serves as a valuable model system for investigating the regulation of intestinal stem cells. The Drosophila gut epithelium is in constant contact with indigenous microbiota and encounters externally introduced "non-self" substances, including foodborne pathogens. Therefore, in addition to its role in digestion and nutrient absorption, another essential function of the gut epithelium is to control the expansion of microbes while maintaining its structural integrity, necessitating a tissue turnover process involving intestinal stem cell activity. As a result, the microbiome and pathogens serve as important factors in regulating intestinal tissue turnover. In this manuscript, I discuss crucial discoveries revealing the interaction between gut microbes and the host's innate immune system, closely associated with the regulation of intestinal stem cell proliferation and differentiation, ultimately contributing to epithelial homeostasis.

11.
Mod Pathol ; 37(2): 100408, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135153

RESUMEN

Trastuzumab deruxtecan (T-DXd) has been approved by the US Food and Drug Administration (FDA) to treat patients with metastatic HER2-positive and HER2-low breast cancer, and clinical trials are examining its efficacy against early-stage breast cancer. Current HER2 immunohistochemical (IHC) assays are suboptimal in evaluating HER2-low breast cancers and identifying which patients would benefit from T-DXd. HER2 expression in 526 breast cancer tissue microarray (TMA) cores was measured using the FDA-approved PATHWAY and HercepTest IHC assays, and the corresponding RNA levels were evaluated by RNAscope. HER2 protein levels by regression analysis using a quantitative immunofluorescence score against cell line arrays with known HER2 protein levels determined by mass spectrometry were available in 48 of the cores. RNAscope was also performed in 32 metastatic biopsies from 23 patients who were subsequently treated with T-DXd, and the results were correlated with response rate. HER2 RNA levels by RNAscope strongly correlated with HER2 protein levels (P < .0001) and with HER2 IHC H-scores from the PATHWAY and HercepTest assays (P < .0001). However, neither protein levels nor RNA levels significantly differed between cases scored 0, ultralow, and 1+ by PATHWAY and HercepTest. The RNA levels were significantly higher (P = .030) in responders (6.4 ± 8.2 dots/cell, n = 12) than those in nonresponders (2.6 ± 2.2, n = 20) to T-DXd. RNAscope is a simple assay that can be objectively quantified and is a promising alternative to current IHC assays in evaluating HER2 expression in breast cancers, especially HER2-low cases, and may identify patients who would benefit from T-DXd.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Receptor ErbB-2/análisis , ARN Mensajero/genética , Trastuzumab/uso terapéutico
12.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106035

RESUMEN

The ATM protein kinase is a master regulator of the DNA damage response and also an important sensor of oxidative stress. Analysis of gene expression in Ataxia-telangiectasia patient brain tissue shows that large-scale transcriptional changes occur in patient cerebellum that correlate with expression level and GC content of transcribed genes. In human neuron-like cells in culture we map locations of poly-ADP-ribose and RNA-DNA hybrid accumulation genome-wide with ATM inhibition and find that these marks also coincide with high transcription levels, active transcription histone marks, and high GC content. Antioxidant treatment reverses the accumulation of R-loops in transcribed regions, consistent with the central role of ROS in promoting these lesions. Based on these results we postulate that transcription-associated lesions accumulate in ATM-deficient cells and that the single-strand breaks and PARylation at these sites ultimately generate changes in transcription that compromise cerebellum function and lead to neurodegeneration over time in A-T patients.

13.
Biology (Basel) ; 12(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37997999

RESUMEN

Abiotic stresses extensively reduce agricultural crop production globally. Traditional breeding technology has been the fundamental approach used to cope with abiotic stresses. The development of gene editing technology for modifying genes responsible for the stresses and the related genetic networks has established the foundation for sustainable agriculture against environmental stress. Integrated approaches based on functional genomics and transcriptomics are now expanding the opportunities to elucidate the molecular mechanisms underlying abiotic stress responses. This review summarizes some of the features and weblinks of plant genome databases related to abiotic stress genes utilized for improving crops. The gene-editing tool based on clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has revolutionized stress tolerance research due to its simplicity, versatility, adaptability, flexibility, and broader applications. However, off-target and low cleavage efficiency hinder the successful application of CRISPR/Cas systems. Computational tools have been developed for designing highly competent gRNA with better cleavage efficiency. This powerful genome editing tool offers tremendous crop improvement opportunities, overcoming conventional breeding techniques' shortcomings. Furthermore, we also discuss the mechanistic insights of the CRISPR/Cas9-based genome editing technology. This review focused on the current advances in understanding plant species' abiotic stress response mechanism and applying the CRISPR/Cas system genome editing technology to develop crop resilience against drought, salinity, temperature, heavy metals, and herbicides.

14.
Animals (Basel) ; 13(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37889686

RESUMEN

Parasitic infections pose significant challenges in aquaculture, and the increasing resistance to conventional anthelmintics necessitates the exploration of alternative treatments. Levamisole hydrochloride (HCl) has demonstrated efficacy against monogenean infections in various fish species; however, research focused on Microcotyle sebastis infections in Korean rockfish (Sebastes schlegelii) remains limited. Therefore, this study aimed to evaluate the efficacy of levamisole HCl against M. sebastis infections in Korean rockfish with the goal of optimizing anthelmintic usage in aquaculture. In this study, we first assessed the susceptibility of M. sebastis to levamisole HCl in vitro. Subsequently, in vivo evaluations were conducted to assess the drug's efficacy, safety, and to identify optimal administration methods. In vitro experiments revealed concentration-dependent sensitivity of M. sebastis to levamisole HCl, with a minimum effective concentration (MEC) of 100 mg/L. In vivo experiments employed oral administration, intraperitoneal injection, and immersion treatments based on the MEC. Oral administration proved to be a safe method, yielding efficacy rates of 27.3% and 41.6% for 100 mg/kg and 200 mg/kg doses, respectively, in contrast to the immersion and injection methods, which induced symptoms of abnormal swimming, vomiting, and death. Biochemical analyses conducted to assess the safety of levamisole HCl revealed a transient, statistically significant elevation in the levels of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) on day three post-administration at 20 °C. Following this, no substantial differences were observed. However, at 13 °C, the enzyme levels remained relatively consistent, emphasizing the role of water temperature conditions in influencing the action of levamisole HCl. Our research findings substantiate the efficacy of levamisole HCl against M. sebastis in Korean rockfish, underscoring its potential for safe oral administration. These results provide valuable insights for developing parasite control strategies involving levamisole HCl in Korean rockfish populations while minimizing adverse impacts on fish health and the environment. However, this study bears limitations due to its controlled setting and narrow focus. Future research should expand on these findings by testing levamisole HCl in diverse environments, exploring different administration protocols, and examining wider temperature ranges.

15.
ACS Pharmacol Transl Sci ; 6(10): 1471-1479, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37854622

RESUMEN

The pseudokinase mixed-lineage kinase domain-like protein plays a crucial role in programmed cell death via necroptosis. We developed a novel mixed-lineage kinase domain-like inhibitor, P28, which demonstrated potent necroptosis inhibition and antifibrotic effects. P28 treatment directly inhibited mixed-lineage kinase domain-like phosphorylation and oligomerization after necroptosis induction, inhibited immune cell death after necroptosis, and reduced the expression of adhesion molecules. Additionally, P28 treatment reduced the level of activation of hepatic stellate cells and the expression of hepatic fibrosis markers induced by necroptosis stimulation. Unlike the necrosulfonamide treatment, the P28 treatment did not induce cytotoxicity. Finally, the cysteine covalent bonding of P28 was confirmed by liquid chromatography-tandem mass spectrometry.

16.
Risk Manag Healthc Policy ; 16: 1467-1476, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575685

RESUMEN

Purpose: To address the increasing number of patient safety incidents, their scope and extent should be assessed and the situations in which they occur determined. This study employed a decision tree analysis based on patient safety incident cases to identify groups at high risk for adverse patient safety incidents and provide data to develop prevention strategies for minimizing their occurrence or recurrence. Methods: In total, 8934 patient safety incidents were analyzed using the "2021 Patient Safety Report Data", which were systematically collected by the Korea Institute for Healthcare Accreditation. A decision tree analysis (Chi-square Automatic Interaction Detection) was employed to identify the characteristics associated with the degree of risk for patient safety incidents. Results: The groups most vulnerable to adverse events were those who experienced healthcare-associated infections (HAI) in long-term care facilities, followed by those experiencing HAI in tertiary hospitals, general hospitals, or clinics, and those experiencing fall-related events in neuropsychiatry departments of tertiary hospitals, general hospitals, or clinics. Conclusion: The most important factor in the degree of harm in patient safety accidents was the type of accident, followed by the type of medical institution, and then the treatment department. Particularly, HAI and falls are the most important factors determining the degree of harm in patient safety accidents.

17.
Plants (Basel) ; 12(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37447014

RESUMEN

Modern plant pathology relies on bioinformatics approaches to create novel plant disease diagnostic tools. In recent years, a significant amount of biological data has been generated due to rapid developments in genomics and molecular biology techniques. The progress in the sequencing of agriculturally important crops has made it possible to develop a better understanding of plant-pathogen interactions and plant resistance. The availability of host-pathogen genome data offers effective assistance in retrieving, annotating, analyzing, and identifying the functional aspects for characterization at the gene and genome levels. Physical mapping facilitates the identification and isolation of several candidate resistance (R) genes from diverse plant species. A large number of genetic variations, such as disease-causing mutations in the genome, have been identified and characterized using bioinformatics tools, and these desirable mutations were exploited to develop disease resistance. Moreover, crop genome editing tools, namely the CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas9 (CRISPR-associated) system, offer novel and efficient strategies for developing durable resistance. This review paper describes some aspects concerning the databases, tools, and techniques used to characterize resistance (R) genes for plant disease management.

18.
bioRxiv ; 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37292706

RESUMEN

This paper introduces a two-inlet, one-outlet lung-on-a-chip device with semi-circular cross-section microchannels and computer-controlled fluidic switching that enables a broader systematic investigation of liquid plug dynamics in a manner relevant to the distal airways. A leak-proof bonding protocol for micro-milled devices facilitates channel bonding and culture of confluent primary small airway epithelial cells. Production of liquid plugs with computer-controlled inlet channel valving and just one outlet allows more stable long-term plug generation and propagation compared to previous designs. The system also captures both plug speed and length as well as pressure drop concurrently. In one demonstration, the system reproducibly generates surfactant-containing liquid plugs, a challenging process due to lower surface tension that makes the plug formation less stable. The addition of surfactant decreases the pressure required to initiate plug propagation, a potentially significant effect in diseases where surfactant in the airways is absent or dysfunctional. Next, the device recapitulates the effect of increasing fluid viscosity, a challenging analysis due to higher resistance of viscous fluids that makes plug formation and propagation more difficult particularly in airway-relevant length scales. Experimental results show that increased fluid viscosity decreases plug propagation speed for a given air flow rate. These findings are supplemented by computational modeling of viscous plug propagation that demonstrate increased plug propagation time, increased maximum wall shear stress, and greater pressure differentials in more viscous conditions of plug propagation. These results match physiology as mucus viscosity is increased in various obstructive lung diseases where it is known that respiratory mechanics can be compromised due to mucus plugging of the distal airways. Finally, experiments evaluate the effect of channel geometry on primary human small airway epithelial cell injury in this lung-on-a-chip. There is more injury in the middle of the channel relative to the edges highlighting the role of channel shape, a physiologically relevant parameter as airway cross-sectional geometry can also be non-circular. In sum, this paper describes a system that pushes the device limits with regards to the types of liquid plugs that can be stably generated for studies of distal airway fluid mechanical injury.

19.
Pharmaceutics ; 15(6)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37376026

RESUMEN

Novel series of chlorin e6-curcumin derivatives were designed and synthesized. All the synthesized compounds 16, 17, 18, and 19 were tested for their photodynamic treatment (PDT) efficacy against human pancreatic cancer cell lines: AsPC-1, MIA-PaCa-2, and PANC-1. The cellular uptake study was performed in the aforementioned cell lines using fluorescence-activated cell sorting (FACS). 17, among the synthesized compounds with IC50 values of 0.27, 0.42, and 0.21 µM against AsPC-1, MIA PaCa-2, and PANC-1 cell lines, respectively, demonstrated excellent cellular internalization capability and exhibited higher phototoxicity relative to the parent Ce6. The quantitative analyses using Annexin V-PI staining revealed that the 17-PDT-induced apoptosis was dose-dependent. In pancreatic cell lines, 17 reduced the expression of the anti-apoptotic protein, Bcl-2, and increased the pro-apoptotic protein, cytochrome C, which indicates the activation of intrinsic apoptosis, the primary cause of cancer cell death. Structure-activity relationship studies have shown that the incorporation of additional methyl ester moiety and conjugation to the enone moiety of curcumin enhances cellular uptake and PDT efficacy. Moreover, in vivo PDT testing in melanoma mouse models revealed that 17-PDT greatly reduced tumor growth. Therefore, 17 might be an effective photosensitizer for PDT anticancer therapy.

20.
Mar Pollut Bull ; 191: 114995, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37146546

RESUMEN

To better understand the role of resting cysts in the outbreak of paralytic shellfish poisoning and bloom dynamics in Jinhae-Masan Bay, Korea, this study investigated the germination features of ellipsoidal Alexandrium cysts isolated from sediments collected in winter and summer under different combinations of temperature and salinity. Morphology and phylogeny of germling cells revealed that the ellipsoidal Alexandrium cysts belong to Alexandrium catenella (Group I). The cysts could germinate across a wide range of temperature (5-25 °C) with germination success within 5 days, indicating that continuous seeding for the maintenance of vegetative cells in the water column may occur through the year without an endogenous clock to regulate germination timing. In addition, the cyst germination of A. catenella (Group I) was not controlled by seasonal salinity changes. Based on the results, this study provides a schematic scenario of the bloom development of A. catenella (Group I) in Jinhae-Masan Bay, Korea.


Asunto(s)
Quistes , Dinoflagelados , Intoxicación por Mariscos , Humanos , Dinoflagelados/fisiología , Temperatura , Bahías , Salinidad , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...